微信
易尚教育

微信号:yishang

02865227334
2020国家公务员考试行测题型解密:鸡兔同笼原来就这么简单
作者:易尚教育 来源: 时间:2019-12-16 17:11:54 阅读:348 分享至:
国家公务员备考课程国家公务员考试交流群

到底什么是鸡兔同笼问题呢?相信很多考生还有点迷糊,鸡兔同笼问题是行测理科试题中的一个重要类型,其实这类题型自古就有记载。据《孙子算经》记载:今有雉兔同笼,上有35头,下有94足,问雉兔各有几何?这就是最初的鸡兔同笼问题。当然举一反三,很多符合这类题型特征的都可归类为鸡兔同笼。那么这特征是什么呢?难道是在题目当中看到出现鸡和兔的问题,就想到这是个鸡兔同笼问题呢?答案肯定不是!接下来易尚教育跟大家一起来看一下鸡兔同笼问题的特征:

按照《孙子算经》的记载,题干已经告诉我们头的总数和脚的总数,并且隐含条件鸡有一个头两只脚,兔有一个头四只脚。因此我们这样归纳鸡兔同笼的特征:已知某两种事物两个属性的指标数和指标总数,分别求个数问题。在以后解题中,只要题干符合这个特征,我们就可以认定是鸡兔同笼问题。

例如:一共有20道题目,答对一道得5分,答错或不答扣一分,要答对多少道题,才能得82分?

这个题它是不是一个鸡兔同笼问题我们就看它符不符合这个特征,题中告诉我们,答对一题和答错或不答一题是两个事物,并且告诉我们事物的两个属性:题目和得分,指标数分别为对一道5分,错一道负1分,指标总数是一共20道题,一共得82分,所以它符合鸡兔同笼的特征,是一个鸡兔同笼问题。

再如:某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件就能得到工资10元,每做一个不合格零件将被扣除5元。已知某人一天共做了12个零件。那么他在这一天做了多少个不合格的零件?

这个题是不是一个鸡兔同笼问题呢?我们也看一下它是否符合这个特征,题干告诉我们合格零件和不合格零件是两个事物,并且告诉我们事物的两个属性:个数和工资,指标数分别为:一个合格零件10元,一个不合格零件扣5元,指标总数是12个零件,但是它还缺少一个指标总数,即没有告诉我们共得的工资!所以它不符合鸡兔同笼问题,这就不是鸡兔同笼问题。我们要怎么样修改它才能变成鸡兔同笼问题呢?只要在题干中告知工资总数,然后再让我们求不合格零件或者合格零件多少个,它才可以变成鸡兔同笼问题。

我们知道了什么样的问题是鸡兔同笼问题了,该如何求解呢?

首先我们回忆一下小学阶段的学习中我们就接触过鸡兔同笼问题,最容易理解的方法也是这个时候学习到的,就是画图法。只不过当时接触的题目数据要小很多。是这样的一道题:

一个疯狂的农夫把鸡和兔子放在了一个笼子里,数了数一共有10个头,26条腿,帮帮农夫算算有几只鸡、几只兔子?

为了能让小学生清晰的记住其中的数量关系,采取了画图的方法:

1、一共有10个头,那我们就用圆圈画出10个头:

 

 

画图添加算式,清晰明了,但是我们遇到了一个问题,当题干数目较大时,比如开始我们讲的《孙子算经》记载的问题,画图就比较麻烦了,但是通过这个画图的思想,我们不难总结出,其实在给每一个头都画2条腿的过程,就是假设所有的动物全是鸡,进而找到差异进行计算的。

那么推荐给大家的方法是假设法:鸡兔同笼,只有鸡和兔两种动物,不是鸡就是兔,所以我们既可以假设全是鸡也可以假设全是兔,那么到底我们假设全是鸡还是全是兔呢?理论上假设全是鸡或兔都是可以的。

假设全是鸡,一只鸡2只脚,35个头有70只脚,而实际上题干告诉我们的脚有94只,少了24只脚,这说明不全是鸡!我们把一只鸡变成一只兔,它将多出两只脚,现在要多出24只脚来:用24÷(4-2)=12,什么意思?就是说把12鸡变成12只兔,它将会多出24只脚来,所以兔有12只,鸡就有23只,这个题我们就解答完了。可以看出用假设法解决鸡兔同笼问题还是比较简单和快捷的。

解析:假设全是鸡:35×2=70

实际94

少24÷ (4-2)=12(兔)

鸡:35-12=23(只)

可以看出,假设法在解决鸡兔同笼问题时是比较高效的。那么根据这个方法,一起来解决一下下面这道考试试题。

例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两个教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办培训27次,每次培训均座无虚席,当月培训1290人次,问甲教室当月共举办了多少次培训?

A.8 B.10 C.12 D.15

在甲教室培训和在乙教室培训是两个事物,并且告诉我们事物的两个属性的指标数即甲教室每次可以坐50人,乙教室每次可以坐45人;指标总数是一共培训27次,共培训1290人次,所以它符合鸡兔同笼的特征,属于鸡兔同笼问题。

甲教室 表示鸡;乙教室 表示兔;

27次 表示头;1290人次 表示脚。

解析:假设全是甲教室:50×27=1350

实际1290

多60÷ (50-45)=12(乙教室)

甲教室:27-12=15

归根结底,其实鸡兔同笼问题并不难,只要我们做到熟记鸡兔同笼问题的特征,判断所做题型是否属于鸡兔同笼问题;然后再用假设法解题,基本就不成问题了。

易尚教育专家认为,考生们掌握这些基础知识还远远不够,还需要大家不断夯实和练习,通过大量练习,掌握各类题型,才能做到胸有成竹。祝大家有所收获,取得优异的成绩!